plot_sparsity (generic function with 1 method)
Matrix Completion
We present another example that is about matrix completion. The idea is, given a partially observed matrix $Y\in\mathbb{R}^{m\times n}$, to find $X\in\mathbb{R}^{m\times n}$ to minimize the sum of squared errors from the observed entries while 'completing' the matrix $Y$, i.e. filling the unobserved entries to match $Y$ as good as possible. A detailed explanation can be found in section 4.2 of the paper. We will try to solve
\[\min_{||X||_*\le \tau} \sum_{(i,j)\in\mathcal{I}} (X_{i,j}-Y_{i,j})^2,\]
where $\tau>0$, $||X||_*$ is the nuclear norm, and $\mathcal{I}$ denotes the indices of the observed entries. We will use FrankWolfe.NuclearNormLMO
and compare our Frank-Wolfe implementation with a Projected Gradient Descent (PGD) algorithm which, after each gradient descent step, projects the iterates back onto the nuclear norm ball. We use a movielens dataset for comparison.
using FrankWolfe
using ZipFile, DataFrames, CSV
using Random
using Plots
using Profile
import Arpack
using SparseArrays, LinearAlgebra
using LaTeXStrings
temp_zipfile = download("http://files.grouplens.org/datasets/movielens/ml-latest-small.zip")
zarchive = ZipFile.Reader(temp_zipfile)
movies_file = zarchive.files[findfirst(f -> occursin("movies", f.name), zarchive.files)]
movies_frame = CSV.read(movies_file, DataFrame)
ratings_file = zarchive.files[findfirst(f -> occursin("ratings", f.name), zarchive.files)]
ratings_frame = CSV.read(ratings_file, DataFrame)
users = unique(ratings_frame[:, :userId])
movies = unique(ratings_frame[:, :movieId])
@assert users == eachindex(users)
movies_revert = zeros(Int, maximum(movies))
for (idx, m) in enumerate(movies)
movies_revert[m] = idx
end
movies_indices = [movies_revert[idx] for idx in ratings_frame[:, :movieId]]
const rating_matrix = sparse(
ratings_frame[:, :userId],
movies_indices,
ratings_frame[:, :rating],
length(users),
length(movies),
)
missing_rate = 0.05
Random.seed!(42)
const missing_ratings = Tuple{Int,Int}[]
const present_ratings = Tuple{Int,Int}[]
let
(I, J, V) = SparseArrays.findnz(rating_matrix)
for idx in eachindex(I)
if V[idx] > 0
if rand() <= missing_rate
push!(missing_ratings, (I[idx], J[idx]))
else
push!(present_ratings, (I[idx], J[idx]))
end
end
end
end
function f(X)
r = 0.0
for (i, j) in present_ratings
r += 0.5 * (X[i, j] - rating_matrix[i, j])^2
end
return r
end
function grad!(storage, X)
storage .= 0
for (i, j) in present_ratings
storage[i, j] = X[i, j] - rating_matrix[i, j]
end
return nothing
end
function test_loss(X)
r = 0.0
for (i, j) in missing_ratings
r += 0.5 * (X[i, j] - rating_matrix[i, j])^2
end
return r
end
function project_nuclear_norm_ball(X; radius=1.0)
U, sing_val, Vt = svd(X)
if (sum(sing_val) <= radius)
return X, -norm_estimation * U[:, 1] * Vt[:, 1]'
end
sing_val = FrankWolfe.projection_simplex_sort(sing_val, s=radius)
return U * Diagonal(sing_val) * Vt', -norm_estimation * U[:, 1] * Vt[:, 1]'
end
norm_estimation = 10 * Arpack.svds(rating_matrix, nsv=1, ritzvec=false)[1].S[1]
const lmo = FrankWolfe.NuclearNormLMO(norm_estimation)
const x0 = FrankWolfe.compute_extreme_point(lmo, ones(size(rating_matrix)))
const k = 10
gradient = spzeros(size(x0)...)
gradient_aux = spzeros(size(x0)...)
function build_callback(trajectory_arr)
return function callback(state, args...)
return push!(trajectory_arr, (FrankWolfe.callback_state(state)..., test_loss(state.x)))
end
end
build_callback (generic function with 1 method)
The smoothness constant is estimated:
num_pairs = 100
L_estimate = -Inf
for i in 1:num_pairs
global L_estimate
u1 = rand(size(x0, 1))
u1 ./= sum(u1)
u1 .*= norm_estimation
v1 = rand(size(x0, 2))
v1 ./= sum(v1)
x = FrankWolfe.RankOneMatrix(u1, v1)
u2 = rand(size(x0, 1))
u2 ./= sum(u2)
u2 .*= norm_estimation
v2 = rand(size(x0, 2))
v2 ./= sum(v2)
y = FrankWolfe.RankOneMatrix(u2, v2)
grad!(gradient, x)
grad!(gradient_aux, y)
new_L = norm(gradient - gradient_aux) / norm(x - y)
if new_L > L_estimate
L_estimate = new_L
end
end
We can now perform projected gradient descent:
xgd = Matrix(x0)
function_values = Float64[]
timing_values = Float64[]
function_test_values = Float64[]
ls = FrankWolfe.Backtracking()
ls_storage = similar(xgd)
time_start = time_ns()
for _ in 1:k
f_val = f(xgd)
push!(function_values, f_val)
push!(function_test_values, test_loss(xgd))
push!(timing_values, (time_ns() - time_start) / 1e9)
@info f_val
grad!(gradient, xgd)
xgd_new, vertex = project_nuclear_norm_ball(xgd - gradient / L_estimate, radius=norm_estimation)
gamma = FrankWolfe.perform_line_search(
ls,
1,
f,
grad!,
gradient,
xgd,
xgd - xgd_new,
1.0,
ls_storage,
FrankWolfe.InplaceEmphasis(),
)
@. xgd -= gamma * (xgd - xgd_new)
end
trajectory_arr_fw = Vector{Tuple{Int64,Float64,Float64,Float64,Float64,Float64}}()
callback = build_callback(trajectory_arr_fw)
xfin, _, _, _, traj_data = FrankWolfe.frank_wolfe(
f,
grad!,
lmo,
x0;
epsilon=1e-9,
max_iteration=10 * k,
print_iter=k / 10,
verbose=false,
line_search=FrankWolfe.Adaptive(),
memory_mode=FrankWolfe.InplaceEmphasis(),
gradient=gradient,
callback=callback,
)
trajectory_arr_lazy = Vector{Tuple{Int64,Float64,Float64,Float64,Float64,Float64}}()
callback = build_callback(trajectory_arr_lazy)
xlazy, _, _, _, _ = FrankWolfe.lazified_conditional_gradient(
f,
grad!,
lmo,
x0;
epsilon=1e-9,
max_iteration=10 * k,
print_iter=k / 10,
verbose=false,
line_search=FrankWolfe.Adaptive(),
memory_mode=FrankWolfe.InplaceEmphasis(),
gradient=gradient,
callback=callback,
)
trajectory_arr_lazy_ref = Vector{Tuple{Int64,Float64,Float64,Float64,Float64,Float64}}()
callback = build_callback(trajectory_arr_lazy_ref)
xlazy, _, _, _, _ = FrankWolfe.lazified_conditional_gradient(
f,
grad!,
lmo,
x0;
epsilon=1e-9,
max_iteration=50 * k,
print_iter=k / 10,
verbose=false,
line_search=FrankWolfe.Adaptive(),
memory_mode=FrankWolfe.InplaceEmphasis(),
gradient=gradient,
callback=callback,
)
fw_test_values = getindex.(trajectory_arr_fw, 6)
lazy_test_values = getindex.(trajectory_arr_lazy, 6)
results = Dict(
"svals_gd" => svdvals(xgd),
"svals_fw" => svdvals(xfin),
"svals_lcg" => svdvals(xlazy),
"fw_test_values" => fw_test_values,
"lazy_test_values" => lazy_test_values,
"trajectory_arr_fw" => trajectory_arr_fw,
"trajectory_arr_lazy" => trajectory_arr_lazy,
"function_values_gd" => function_values,
"function_values_test_gd" => function_test_values,
"timing_values_gd" => timing_values,
"trajectory_arr_lazy_ref" => trajectory_arr_lazy_ref,
)
ref_optimum = results["trajectory_arr_lazy_ref"][end][2]
iteration_list = [
[x[1] + 1 for x in results["trajectory_arr_fw"]],
[x[1] + 1 for x in results["trajectory_arr_lazy"]],
collect(1:1:length(results["function_values_gd"])),
]
time_list = [
[x[5] for x in results["trajectory_arr_fw"]],
[x[5] for x in results["trajectory_arr_lazy"]],
results["timing_values_gd"],
]
primal_gap_list = [
[x[2] - ref_optimum for x in results["trajectory_arr_fw"]],
[x[2] - ref_optimum for x in results["trajectory_arr_lazy"]],
[x - ref_optimum for x in results["function_values_gd"]],
]
test_list =
[results["fw_test_values"], results["lazy_test_values"], results["function_values_test_gd"]]
label = [L"\textrm{FW}", L"\textrm{L-CG}", L"\textrm{GD}"]
plot_results(
[primal_gap_list, primal_gap_list, test_list, test_list],
[iteration_list, time_list, iteration_list, time_list],
label,
[L"\textrm{Iteration}", L"\textrm{Time}", L"\textrm{Iteration}", L"\textrm{Time}"],
[
L"\textrm{Primal Gap}",
L"\textrm{Primal Gap}",
L"\textrm{Test Error}",
L"\textrm{Test Error}",
],
xscalelog=[:log, :identity, :log, :identity],
legend_position=[:bottomleft, nothing, nothing, nothing],
)
This page was generated using Literate.jl.